
测试并了VARI用不饱和聚酯树脂DS326PT-1在动态升温及恒温条件下的粘度变化,建立了工程粘度模型,并通过该模型来预测适用于VARI(真空辅助成型工艺)的低粘度工艺窗口。实验数据表明,该粘度模型与实验结果吻合良好,可为VARI工艺过程的模拟与参数提供有效的参考数据。
彩色防滑路面分享彩色沥青路面施工的流程:
一、路面施工流程
1、混合料拌和与运输
华卓彩色沥青混合料与普通沥青混合料施工工艺有相似之处,
但应着重注意以下事项:
1.1. 清洗原有黑色沥青上料管线,并对接彩色沥青设备。
1.2.拌和前,应将搅拌站的拌和缸采用热的集料干拌数次以清洗干净。
1.3.原料性能应稳定、使生产目标配合比能限度地接近设计配 合比;
1.4. 集料温度控制在160-170℃之间,沥青加热温度160℃一170℃。
1.5. 颜料采用袋包装,使用前计算好每一缸混合料需要加入的颜料的数量,并预先将包装打开,当集料进入拌和缸后,即将颜料直接人工投入拌和缸中,建议采用60秒以上的时间进行拌和,具体拌和时间以从拌出的沥青混合料外观来看,沥青裹覆均匀,无花白颗粒.颜色均匀一致.无结团成块、粗细颗粒离析现象,能满足施工质量要求。
1.6. 用于运输混合料的车辆及覆盖物也应事先清洗干净。
2、混合料摊铺。
新闻:彩色防滑路面粘合剂_远红外陶瓷颗粒

采用快速氯离子电迁移法(RCM法)测定了不同单向荷载、冻融循环次数和养护龄期条件下C30高性能混凝土的氯离子扩散系数,研究了氯离子扩散系数与各影响因素之间的函数关系.结果表明:单向荷载、冻融循环次数和养护龄期均对氯离子渗透性能产生显著影响.氯离子扩散系数与单向荷载加载等级之间近似呈二次多项式函数关系,与冻融循环次数之间近似呈线性函数关系,与养护龄期之间近似呈幂函数关系.
2.1. 彩色沥青混合料与常规沥青混合料摊铺各道工序基本相同;
2.2. 摊铺机应清洗干净,特别是熨平板应使用溶剂清洗或先将彩色沥青混合料摊铺于路面下层直至表面没有条纹为止。
2.3. 开始摊铺时工期安排,考虑混合料的生产、运输、摊铺和碾压能力,确保摊铺连续;并做到全幅摊铺不间断一次性成型,以保持色泽一致,粒料均匀、美观。
3、混合料压实成型。
3.1. 压路机水箱中的水应更换,并将任何铁锈痕迹冲洗干净。压路机应停于木垫上使其不接触黑色沥青下面层,碾压时直接从木垫上行驶至彩色混合料上。碾压可在摊铺后随即进行。在此过程中使用的任何与混合料接触的机具都应清洗干净。
3.2. 碾压组合方式,与常规沥青混合料相同。
3.3. 碾压强度,在不把石料压花的前提下,尽量压实,要注意避免过压,将石料压碎,将会影响色彩效果。
3.4. 碾压开始后,即必须停止手工作业或人工摊铺及补料,否则由于表面有水,人工摊铺及补料将难以与下面的料粘结在一起。这一点是先要对施工人员进行反复强调。
3.5. 为防止彩色沥青面层污染,碾压前须用水冲去粘附在压路机钢轮上的杂物及砂土,确定碾压设备清洁后方可允许进行碾压。碾压结束待温度冷却至常温才能开放交通。
二、混合料的制备及施工温度
新闻:彩色防滑路面粘合剂_远红外陶瓷颗粒

采用有机硅橡胶与表面改性过的微米/纳末制备了超疏水涂层,研究了该涂层对于沥青路面防冰性能的影响.接触角测试结果表明,该超疏水涂层的接触角达到了160°;沥青混合料表面结冰温度试验结果表明,在同样降温条件下,相比于无涂层的沥青混合料试件,涂有超疏水涂层沥青混合料试件的表面水滴结冰时间延长了1.5倍;沥青混合料表面冰层黏结力试验结果表明,相比于无涂层的沥青混合料试件,涂有超疏水涂层沥青混合料试件的表面冰层黏结力在-5℃时减小了84%.
三、施工注意事项
1、建议胶结料用量5~6%,颜料用量2~3%左右。
2、凡是需要接触到胶结料的地方(沥青罐、进油/回油管道、沥青泵、拌缸、运输车、摊铺设备及工具等),都需要清洗或者更换。碾压按照常规的黑沥青路面标准碾压方式进行。
3、胶结料在拌合前加热到160~180℃,混合料的出料温度不宜过高,一般控制在160℃左右,根据工程与搅拌站的实际情况(工程量、进度、天气、运输距离等),确定适当的提高或降低出料温度,但不能低于150℃,不能超过180℃。摊铺前必须混合料温度(即到工地温度)在140℃以上,初压温度不得低于120℃,终压温度不得低于90℃。
4、当气温低于10℃时,不宜进行混合料路面施工。如在0~10℃气温施工,必须采取确保施工质量的有效措施;在低于0℃及遇到大风的冬季不应施工,雨天不得铺筑混凝土。
5、非机动车到采用8-9吨压路机压实3-5遍左右,避免采用大的压路机,避免压碎表面石料。
新闻:彩色防滑路面粘合剂_远红外陶瓷颗粒

在合理的假设基础上,通过建立的展纱织物强结构二维几何结构模型,预测展纱织物内纤维束屈曲状态,建立展纱织物复合材料的纤维体积分数的理论公式,纤维束屈曲率与纤维体积含量之间的关系。理论计算结果与实测值的比较,表明所提出的细观几何模型是合理的。