采用我司研制的电缆敷设监测系统。该系统由数据采集仪采集各传感器传输敷设速度、牵引张力、电缆张力等的感应电流或电压信号,并接入计米器,水深仪,流速仪,经初步转换后传输给后台应用处理软件,经运算及处理,并反映至微机显示器上或外接显示屏上,并进行连续存储。电测人员将各种数据反映给施工指挥人员,以供及时掌握作业情况。通过布缆机的张力控制,可以保证电缆在敷设时随时保证一定的悬链形态,同时又随时控制张力在电缆的允许范围之内。

新闻河南省水下沉管安装公司-水上架设管道碳纤维复合材料在民用飞机上得到广泛应用,但是由于其差的导电性易受雷击损伤。采用化学镀的方法在碳纤维复合材料试样表面制备了导电金属铜镀层以提高复合材料抗雷击特性。利用扫描电子显微镜和X射线衍射分析了镀层的表面形貌与晶体结构,研究了的浓度对金属铜镀层的沉积速率与导电性能的影响。结果表明,随着浓度的加,沉积速率逐渐升高,而镀层电阻值逐渐降低,导电性加。当浓度为14g/L时,碳纤维复合材料表面铜晶粒均匀,结晶性好,电阻为19.8mΩ/sq,具有良好的导电性。电缆敷设纠偏措施
电缆敷设施工时,江面作业时间较长,施工船容易受到风、浪、流、江面流速作用的影响,导致电缆偏离设计路由。
我司采用的施工方法,施工船前方由钢缆牵引,后方的埋设机相当于另1只稳船锚;此外,施工船由施工拖轮(锚艇)在施工船背水侧或背风侧进行顶推、侧推动力定位,控制电缆敷设施工时的航向偏差。
施工中技术人员通过DGPS接收机采集当前船位坐标和铺缆偏差数据;经软件计算后可以及时反应船体所受外力大小与方向。偏差控制指挥人员由此可以及时指挥调节顶推动力船的顶推位置、顶推方向,进车速度,从而控制安装船的铺缆偏差。

新闻河南省水下沉管安装公司-水上架设管道通过对纤维缠绕机的结构特性和工作原理的概述,发现目前国内纤维缠绕机存在的问题和不足,然后根据实际生产需要在建模软件Creo中对气瓶纤维缠绕机自动挂纱机构进行设计与装配。利用MECH/PRO接口将挂纱机构模型导入ADAMS中,并对其进行了挂纱运动仿真,对几种常见型号的气瓶芯模进行模拟挂纱,获得了机构的运动特性。研究结果表明,所设计的纤维缠绕机自动挂纱机构满足多种尺寸的芯模挂纱设计要求,对解决目前国内纤维缠绕机存在自动化程度不高的问题有一定的指导意义。终端登陆
电缆敷设至设计登陆点后,调整锚位将施工船调头90度,然后甩出电缆尾线,并用轮胎将电缆绑扎后助浮于江面上,使电缆在江面上形成一“Ω”形,电缆头甩出浮于水面上后,jszyqsasdfg此时将电缆头系于预先铺设在电缆终端登陆点侧的φ18mm 钢丝绳上,通过缓缓绞动机动绞磨机将电缆牵引入岸滩预挖电缆沟槽、石砌栈桥电缆沟沟槽,直至岸上终端杆,并按照设计要求余留一定长度,电缆预留至足够长度后立即将江面上的电缆沉放至江底河床。
电缆牵引登滩完毕,在电缆上安装张拉式锚固网套予以固定。
滩地段电缆放入预挖沟槽内,留足设计规定的余量后,采用回填沙袋和堆压条石方式加以保护。

新闻河南省水下沉管安装公司-水上架设管道机翼翼梁是飞机的主承力结构,西方发达国家在成熟的碳纤维复合材料制造技术的基础上,已在多种先进飞机上采用全部由碳纤维复合材料制造的翼梁;而国内在这一方面的研究才起步不久,尚未形成完善实用的制造技术。本文简述了国外几种先进飞机的复合材料机翼翼梁的制造方法,并指出了这一领域的发展趋势,以作为我国未来复合材料机翼翼梁研制的参考。江中段电缆埋深保护
根据设计要求,本工程江缆需全程进行埋深保护,本次拟采用的保护方式为人工开挖或潜水员冲埋进行保护,沟槽的开挖深度0.5米,宽度0.5米,待电缆敷设入沟槽后再回填沙袋,并用条石堆压进行保护。
7.6上岸段地貌情况
7.7备缆盘放
江底电缆敷设完成后,将备缆两端电缆头密封,根据业主的位置盘放剩余电缆。盘放剩余电缆的位置选择在施工船只容易停靠、且有足够的空间的地方为宜,以便修复电缆时方便截取。电缆盘放时,施工船只抛设固定锚就位,岸上布置绞磨机将电缆牵引至岸上或岸滩,电缆盘放时采用顺“8”字的方式盘放。
新闻河南省水下沉管安装公司-水上架设管道为建立准确纤维缠绕压力容器结构模型,在前人壁厚预测方法基础上采用多项式逼近算法来预测压力容器封头纤维层厚度。针对封头部分纤维缠绕角不断变化和极孔附近纱线堆叠等影响因素,采用多项式逼近算法进行封头壁厚预测,并与经典算法、算法、平面算法壁厚预测值及实际壁厚测量值对比分析,结果表明运用此方法得到的纤维层壁厚预测值与实际壁厚测量值更接近,从而为分析压力容器可靠性提供准确压力容器结构模型。